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The Nile Delta represents two-thirds of agricultural output with low precipitation and population growth
that depletes the groundwater. The Quaternary aquifer is consisted of Holocene (aquitard) underlain by
Pleistocene (aquifer), and groundwater flows from south to north, northwest, and northeast directions.
The total dissolved solids (TDS) concentration increases toward the western and northeastern part in
1997 by seawater intrusion and irrigation practices. The TDS concentration anomalies were in the north
and east, and are attributed to pumping within 2003, 2010, and 2013 periods. There is a good match
between hydrogeochemistry (TDS content) and hydrogeology (groundwater flow) with the TDS
concentration change found to decline mainly in the southwestern and northeastern part within 1997,
2003, and 2013 periods. The TDS concentration change declines toward the northern part of the eastern
Nile Delta by increase in potentiometric surface from the River Nile in 2010. The geostatistical
application (GIS) is used to determine the groundwater quality and hydrogeochemical parameters
distribution, which is accomplished by ordinary kriging. The first produced map is the default options,
while the next map (2nd) incorporated more of the spatial relationships constructed. When the latter is
estimated, the exploratory spatial data investigation (ESDA) techniques check parameters extent.
Trends were deleted and spatial autocorrelation was modeled. The ESDA and geostatistical techniques
were used and the surfaces of the major ions were found more accurate. The third surface showed
critical probability that TDS concentration threshold point increase drinking and irrigation purposes in
the northeastern part and decrease in the southwestern parts of the Nile Delta. The default kriging is the
best for mapping the hydrogeochemical parameters.

Key words: Total dissolved solids (TDS) change, major ions, geostatistical tools, GIS, Nile Delta.

INTRODUCTION

Agriculture is the dominant industries in the Nile Delta sea level rise, River Nile flows, overexploitation, septic
area (~ 63% of the total agricultural area) and is caused tanks and agricultural practices. Assessment of spatial
by soil type (Dawoud, 2004) and watering canals correlation in hydrogeochemistry is useful for investigating

included. The quality of the groundwater was affected by groundwater quality.
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Figure 1. Geological profiles through the Nile Delta (after Geriesh et al., 2015).

In geostatistical application, kriging tool is the most used
which  estimates the piezometric surfaces and
hydrogeochemical parameters distribution. Many authors
investigate spatial distribution of groundwater quality by
Gographic Information System (GIS) software such as
Ayazi et al. (2010), Manap et al. (2012), EI Afly (2012),
Machiwal et al. (2012), Neshat et al. (2013), and Manap
et al. (2013). The aims of the dissertation are 1) to
determine the anthropogenic sources impact on
groundwater quality, and 2) to investigate the application
of various spatial models and data transformation to
interpret the spatial distribution of the groundwater
quality. In this study, kriging techniques in the framework
of GIS software (ArcGIS Geostatistical Analyst) are used.

Hydrogeology

Active natural delta has stopped currently (Stanley and
Warne, 1996).

The area and coastline length of Nile Delta were 22 x 10°
km? and 225 km, respectively (Stanley and Warne, 1996).
The topography varies from 18 m (Cairo) to < 1 m
(coast). A third of the Nile water was evapotranspirated
and leaked into the Quaternary aquifer. Two-third of Nile
water was distributed slowly in irrigation systems and
drains (Sestini, 1992). The Quaternary deposits consisted
of upper Holocene (aquitard) and lower Pleistocene
(main aquifer) (Figure 1). The maximum thickness of
Bilgas Formation (Holocene) is 71 m in the north and 77
m in the east, and decrease gradually towards the south
(zhaghloul et al., 1989). The leaky aquifer was recharged
from the surface waters distributed in the Nile Delta. The
mean recharge in the southern and middle parts was 0.8
mm/day, whereas at northern sector, the leakage
watering canals is cut by wastewaters networks (El Arabi
et al., 2001). The Quaternary deposits in the Nile Delta
form a huge aquifer while thickness ranges from 200 m at
southern part to 1000 m in the northern (Figure 1).
Transmissivity changes from 5000 to 25000 mzldayin
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Figure 2. Flow chart of the steps followed for the geostatistical analysis.

(modified after Marko et al., 2013).

northern parts to 5000 to 10000 m?/day in the southern
part. The hydraulic conductivity is 120 m/day in the
southern sector area and 50 m/day in the northern part.
Storage coefficient (S) of the aquifer ranges from 107 in
the southern part to 0.0009 in the northern part (Dahab,
1993).

METHODS OF ANALYSIS

The hydrogeochemical parameters of major ions and piezometric
surfaces were collected within different periods (1997-2013)
(Geriesh, 2003; Geriesh et al., 2015; Saad and Mohamed, 2010;
RIGW/IWACO, 1999). The historical review of TDS concentration
and piezometric heads within different periods was determined by
GIS contour. The impact of anthropogenic sources on groundwater
quality was estimated and the correlation between hydrogeology
(groundwater flow) and hydrogeochemisrty (TDS content) was
achieved. The TDS concentration and piezometric surfaces
changes within different periods were determined by GIS software.
Spatial distribution of groundwater chemistry parameters is
analyzed using a geostatistical analyst tools (GlSsoftware).
Geostatistic is considered as a set of numerical methods that focus
on behaviors of spatial issues mainly represented by random
models in such a way that the time interval investigation identifies
temporal data (Olea, 2000). It focuses on spatially autocorrelated
information with basic spatial forms, whereas the latter was
indicated in semi-variogram investigation. Semi-variogram classified
spatial correlation of the elements. The semivariogram indicates the
relationship between the lag distance on X-axis and the
semivariogram value on the Y-axis. Lag distance represents the
length among the estimation of a special property. From the

semivariogram, the spatial correlation of a spatially changing
property could be clarified. The semivariogram point trends from
low to high values indicating higher spatial autocorrelation at the
small lag length (Nayanaka et al., 2010). Kriging is a technique
concerned with making optimal, unbiased estimates of regionalized
variables at unsampled locations using the structural properties of
the semivariogram and the initial set of data values (David, 1977).
The procedure was illustrated in Figure 2, and the following steps
(Johnston et al., 2001; Mehrjardi et al., 2008) were performed:

a) Exploratory spatial data analysis (ESDA) was performed using
ArcGIS software, for the groundwater chemistry, to study the spatial
distribution of the data.

b) Spatial interpolation for groundwater chemistry data was
performed using ArcGIS software, and the ordinary

kriging is applied by involving the following steps, semivariogram
modelling, model validation using cross-validation, and generation
of the groundwater chemistry maps.

RESULTS AND DISCUSSION

Historical review of the TDS concentration and
potentiometric surface

The TDS concentration increases in the western and
northeastern part during 1997 (Figure 3a), and is caused
by seawater intrusion and irrigation practices. The TDS
concentration anomalies appeared toward the north and
east by pumping that enhanced the seawater intrusion
within 2003, 2010, and 2013 periods (Figure 3b-d). The
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Figure 3. Spatial distribution of TDS concentration within different periods.

highest TDS concentration (anomalies) was in the north
and east due to the subdivision of the Pleistocene aquifer
into sub aquifers by aquitard Holocene sediments (Figure
1). The seawater that intrude into the sub aquifers, react
with aquitard, and the TDS concentration sometimes go
higher than seawater. The groundwater flow was towards
the north, northwest, and northeast (Figure 4a-d). There
is a good match between hydrogeochemistry (TDS
concentration in Figure 3) and hydrogeology (groundwater
flow in Figure 4). The TDS concentration contributed to
rock water interaction during the groundwater flow from
the recharge (south) to discharge areas (TDS anomalies).
The water level of the Holocene aquitard is generally
higher than potentiometric surface of the Pleistocene
aquifer (Geriesh et al., 2015). Moreover, the Holocene
aquitard pressure is higher than Pleistocene aquifer that
enhances the downward leakage from agricultural activity
into aquitard and finally in the Pleistocene aquifer, thus,
helping to raise the TDS concentration throughout the
Nile Delta area.

The TDS concentration change decline mainly in the
southwestern and northeastern part (Figure 5a-c) within
1997, 2003, and 2013 periods and is attributed to
recharge from River Nile. The TDS concentration change
increases due the northern and eastern parts (Figure 5a-
c) due to seawater intrusion, irrigation practices,
waterlogging, increase in pumping rate (Figure 6), and
rock water interaction. The potentiometric surface change
increases in the eastern part (Figure 7a-c) by seawater
intrusion from Suez Canal, River Nile, and irrigation
practices; but showed patchy decrease due western part
(Figure 7a-c). The TDS concentration change increases
due south, northwest, and northeast and depleted in the
central and western part (Figure 5b) within 2003 and
2013 periods. The potentiometric surface change between
2003 and 2013 increases in the middle and eastern part
of Nile Delta (Figure 7b), leading to increase in TDS
concentration in most of the irrigated areas. The
potentiometric surface change decreases generally in the
western part (Figure 7b) by low recharge from River Nile.
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The increase and decrease in TDS concentration confirm
two recharge sources one from River Nile and the other
by seawater intrusion and irrigation practices. The TDS
concentration change depleted due south, southeast, and
east (Figure 5d-e) within 1997, 3003 and 2010 periods,
but was attributed to increase in piezometric surface
during 2010 period (Figure 4c). The TDS change
reversed the trend within 2010 and 2013 periods (Figure
5f). The TDS concentration change declined due the
northern part of the eastern Nile Delta (Figure 5f) by
impact of increase in potentiometric surface during 2010
(Figure 4c). The increases in piezometric head here is
mainly from River Nile which causes dilution of the
groundwater due the northern part and backing the
interface zone towards the sea. The TDS change in 2010
and 2013 periods increases due the southern part by
seawater intrusion from Suez Canal and irrigation

practices. The gradual depletion in TDS concentration
from southern to southern and middle to northern part of
the eastern Nile delta (Figure 5d-f) indicates the gradual
recovery of the seawater intrusion zone. The movement
of the interface seaward was accompanied by increase in
potentiometric surface during 2010 period in the eastern
Nile Delta.

Geostatistical analyst tools

Creating a surface using default parameters

By default, ordinary kriging and prediction surface was
chosen for TDS concentration (Figure 8a). The

semivariogram/covariance models (Figure 8a) checks
spatial relationships among measured points where
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Figure 5. Spatial distribution of TDS concentration change within different periods.
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Figure 6. Abstraction rates in Nile Delta within different periods (RIGW,
1980, 1992, 1999, 2003, and 2010).

closer things are dissimilar than apart. The semivariogram correlations of the information called variography. The
model fitting is applied in order to touch the spatial crosshairs show a location that has no measured value.
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change within different periods.

The expected point in crosshairs is used alongside the
measured locations. TDS concentration map was created
and called default kriging (Figure 9a). The highest TDS
concentration is more or less in the same areas in default
kriging, log kriging, and trend removed maps (Figure 9a-
c), whereas the lowest TDS content is towards southern
part, but spotted in different directions as shown in Figure
9a-c.

Exploring the data

This involves use of ESDA tools to explore data and

gather information to build good interpolation models.
Examine the data distribution, identify the data trends,
and understand the spatial autocorrelation and directional
influences.

Histogram tool: The interpolation techniques can
produce a map, which are better outputs if the data is
normally distributed. The TDS and major ions
concentrations skewed (lopsided) and both the mean and
the median greatly differs (Figures 10 and 11), indicating
that they are not normally distributed. The interpolation
method of the information always focuses on their
normality.
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Figure 8. The semivariogram/covariance model of the TDS concentration.

The information indicated high skewness, and
accordingly, they normalized by the suitable change in
order to give a good accuracy. In the ESDA of ArcGIS,
the logarithmic transformations applied to all hydro-
geochemical elements that were attributed to positive

numbers. Figures 10a-d and 11 clarifies the difference in
the skewness coefficient values pre- and post-change.
Hydrogeochemical elements such as calcium,
magnesium, sodium, chloride, suphate, and bicarbonate
have low skewness post change, thus, they need
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transformation as shown in Figure 11. The change in the
histogram shape for the major ions is presented in Figure
11.

Produce a normal QQ figure: The quantile-quantile
(QQ) figure has been constructed in order to differentiate

the data distribution in standard normal distribution, which
provides other estimate of the information normality. The
points nearer to each other are to the straight (45°) line,
whereas sample data near to each other identifies normal
distribution. TDS and major ions concentrations did not
show normal distribution in either the histogram or normal

9
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Figure 10. Histogram and QQ plots of the TDS concentration before transformation (a & ¢) and after logarithmic transformation (b & d).

QQ figure (Figures 10c and 12), they transform to
logarithmic (Figure 10d and 12) for normal distribution.
Figure 12 is near to being a straight line in case of HCOs,
while the rest ions depart from the Iline before
transformation.

Identify global trends: A valley indicated by complicated
equation (2nd level polynomial) produces a U form (Figure
13a). The information shows positive trend from the
center directed around, that is, towards the sea (north
and east) and agricultural activity (south and west).
Because the trend is U formed, a 2™ level polynomial is a
best select to apply as a global trend model. This trend is
possibly attributed to the fact that the contamination is
high at northern and eastern parts and low due southern
and western parts.

Explore spatial autocorrelation and directional
influences: The semivariogram/covariance cloud (Figure
13b) checks the spatial autocorrelation among the

estimated locations whereas its supposed points nearer
to each other are dissimilar. Semivariogram point is the
squared change among the values of each pair of points,
and is figured on the y-axis. X-axis is the length in-
between each pair of determination (Figure 13b). The
semivariogram/covariance cloud indicates a pair of
points. Points nearer to each other are dissimilar. In the
semivariogram figure, the nearest points (on the far left
on the x-axis) have low semivariogram (low values on the
y-axis). As the length among the pairs of points increases
(moving right on the x-axis), the semivariogram increase
(move up on the y-axis). Some points near to each other
(near zero on the x-axis) have a higher semivariogram
(high on the y-axis) than expected (Figure 13b), reflecting
inaccurate chemical analysis.

Mapping with trend removed

This involves produce reform model by ordinary kriging,
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Figure 11. Histograms of the major ions before transformation and after logarithmic transformation.
trend delete, and checks for anisotropy. TDS (Figure 9c). Semi variograms determined after

concentration exhibited a trend and a directional
influence. Once again, it applies the ordinary kriging
interpolation technique, but this time includes trend and
anisotropy to produce good expectation. Ordinary kriging
is the simplest geostatistical model because the number
of assumptions behind it is the lowest. Once the trend
deleted, the statistical investigation will be performed on
the residuals or the short-interval variation of the map.
The trend is automatically added back before the last
map was determined (Figures 8c and 9c). Accordingly,
the expectations are the logic outputs.

Semivariogram/Covariance modeling: The map
represents the fastest difference in the northern-southern
direction and a more gradual variation in the east—west
direction (result in ellipse form). The northern and
southern trend attributed to seawater intrusion and
agricultural impact, respectively. The eastern and
western trends were influenced by seawater intrusion
(Suez Canal) and agricultural activity, respectively. The
aim of semivariogram/covariance modeling (Figure 14) is
to estimate the best fit for a TDS model in the
semivariogram. By deleting the trend, the semivariogram
will model the spatial autocorrelation with no application
of data trend. The latter will be automatically added back
to the estimations before the last map was created

normalizing the data by ArcGIS Geostatistical Analyst in
Universal Transverse Mercator (UTM) coordinates
system. Ordinary kriging used semivariogram modeling
performed on the experimental semivariogram obtained
from the data by checking the angle direction, angle
tolerance, and lag size, until the model fits the data.

Directional semivariograms: Directional impacts on the
locations of the semivariogram and the model will be fit.
In specified directions, points nearer to each other are
dissimilar than in rest directions. Geostatistical Analyst
applies in the directional influences, or anisotropy in the
semivariogram model. Anisotropy can be caused by
lithogenic and anthropogenic sources. The directional
influence (Figure 15a-c) can be statistically quantified and
accounted for TDS concentration. Further, the
semivariogram model increases more gradually and then
flattens out (Figure 15a-c).

Cross-validation: The aim of cross-validation is to
ascertain the model that gives the best expectation. It is
compared by the following:

i) The expectations are unbiased as shown an average
expectation error near zero.
ii) The standard errors are accurate as shown by a root-
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Figure 12. QQ plot of major ions.

Dataset : export proj Attribute: SO4

and mean standard error that are as small as possible.
A comparison of the two interpolation models (Figure
16) based on the previous rules show that the default

mean-square standardized prediction error close to 1.
iii) The expectations do not deviate much from the
estimated points as shown by root-mean-square error



Figure 13. Global trend analysis of the TDS concentration.

kriging (Figure 9a) is the best. After fitting the
semivariogram model, the cross-validation tool was
applied to determine how the aquifer chemical model is
expected to be at unsampled points. The cross-validation
procedure deletes each data point, one at a time, expects
the aquifer chemical contents, and then compares it with
the estimated. In the cross-validation, the determined
statistics was applied to diagnose whether the model
and/or its associated elements concentration are logic.

The expected ratio between the predicted and the
estimated points should be at slope line 1:1. Besides, the
expectation error clarifies the change between the
expectation and the actual determination. The accuracy
in the expectation outputs estimated by the average error
that should be near to zero; the root mean square error
and the average standard error should be as small as
possible; and the root mean square-standardized error
should be near to one (Johnston et al., 2001). The best
model identifies the aquifer chemical concentration maps
(Figure 17).

The Ca and Mg concentrations increase in the northern
and southeastern parts (Figure 17a-b) due to seawater
intrusion and agricultural activity, respectively. It
decreases towards the southwestern part attributed to
infows of River Nile. The Ilowest Ca and Mg
concentrations scattered in east — west line (Figure 17a-
b). The Na and Cl contents enrich the northern and
northeastern parts (Figure 17c-d) because of seawater
intrusion. The SO, concentration increases in the
northern and northeastern parts (Figure 17e) due to its
being affected by seawater intrusion. While the central
decline in SO,4 concentration is caused by both agricultural
activity (fertilizers) and septic tanks, the lowest Na, ClI,
and SO, contents in groundwater was mainly scattered
around River Nile (Figure 18c-e). The HCO; content
increases in the eastern and central parts (Figure 17f)
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due to inflows of River Nile.

Mapping the probability of TDS exceeding a critical
threshold (drinking and irrigation)

The probability of TDS concentration that exceed a
drinking (1000 ppm) and irrigation (2000 ppm) WHO
(2004) guidelines is created (Figure 18a-b). Any value
below threshold is represented by zero while the values
above threshold are indicated by one. The probability, for
drinking application, increased due northeastern by
seawater intrusion and anthropogenic sources and
decline in the southwestern parts (Figure 18a) by inflows
of the River Nile. In irrigation purpose, it increased in the
northern and eastern parts and decreased in the western
part (Figure 18b).

CONCLUSION AND RECOMMENDATION

The Nile Delta is influenced by anthropogenic sources.
The TDS concentration change decline mainly in the
southwestern and northeastern part within 1997, 2003,
and 2013 periods. It is attributed to recharge from River
Nile. The TDS concentration change increases due the
northern and eastern parts as a result of seawater
intrusion, irrigation practices, waterlogging, increase in
pumping rate and rock water interaction. ArcMap with
geostatistical analyst gives many methods for producing
maps, which surface, analyze, and understand spatial
phenomena like seawater intrusion and agricultural
impact. Kriging technigque is a useful tool in mapping
distribution of the hydrogeochemical elements. A log
transformation is applied in order to reduce the skewness
of the data. On comparing the two interpolation models,
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Figure 14. Semivarigrams of the TDS and major ion concentrations with trend removed.
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Figure 16. Cross validation between default and trend removed kriging of the TDS concentration.
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Figure 18. Probability map of the TDS concentration based WHO guidelines

(2004).

the default kriging is the best. The probability of the TDS
content for drinking and irrigation purposes decreases in
the southwestern parts.
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